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Abstract. Considering the unphysical result obtained in the calculation of the free-energy cost for twisting
the boundary conditions in a spin glass, we trace it to the negative multiplicities associated with the Parisi
replica-symmetry breaking (RSB). We point out that a distinct RSB, that keeps positive multiplicities,
was proposed long ago, in the spirit of an ultra-long time dynamical approach due to Sompolinsky. For an
homogeneous bulk system, both RSB schemes are known to yield identical free energies and observables.
However, using the dynamical RSB, we have recalculated the twist free energy at the mean-field level. The
free-energy cost of this twist is, as expected, positive in that scheme, as it should.

PACS. 64.60.-i General studies of phase transitions

1 Introduction

Lately a rather strange result was uncovered. As is well-
known for an O(N) ferromagnet, the breaking of the con-
tinuous symmetry and the associated Goldstone modes,
tax the forcing of a twist in the orientation of the mag-
netization (between the z = 0 and z = L boundaries) by
an amount of free energy proportional to Ld−2 [1]. Conse-
quently the lower critical dimensions above which symme-
try breaking occurs at a non-zero temperature is exactly
given by dc = 2. For a spin glass, the broken continu-
ous symmetry group is the reparametrization (or gauge)
group. The analog of a rotation twist, is now a (small)
gauge twist between the z = 0 and z = L boundaries. In
contradistinction with the O(N) case, through a long and
arduous calculation making use of Parisi’s replica sym-
metry breaking (RSB) [2] on Parisi’s truncated Hamilto-
nian, we obtained a twist free energy cost [3] proportional
to −Ld−2+η (i.e. with a negative coefficient) [4]; the expo-
nent η is the usual order parameter anomalous dimension,
computed there to one loop. The implication for the lower
critical dimension, namely dc = 2 − η � 2.5, was indeed
in agreement with previous estimates [5,6]. However the
negative sign of the coefficient, i.e. a gain in free energy
under twist, was very puzzling. Taking this at face value
could point to the instability of a solution with a space ho-
mogeneous order parameter. If one considers for instance
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an Ising antiferromagnet, one may obtain a lower free en-
ergy with twisted, i.e. antiparallel boundary conditions.
But, given that Parisis’s space-homogeneous solution is
now proven to give the exact free energy [7,8], this seems
unlikely.

A way out of this puzzle seems to be the following.
Parisi’s solution is (semi) stable, all eigenvalues of the as-
sociated Hessian being non-negative when the number of
steps R of RSB goes to infinity [9]. However the multi-
plicities of those eigenvalues are all negative. This means
that the saddle-point where the free-energy is calculated
has the characteristics of a maximum ; hence small excur-
sions away from it will yield an unphysical negative free-
energy cost. This situation, in turn, is due to the fact that,
in Parisi’s RSB, the natural ordering of the box sizes pu

(where u is the discrete overlap) is reversed, i.e. one works
with

pR+1 ≡ 1 ≥ pR ≥ · · · ≥ pu ≥ · · · ≥ p1 ≥ p0 ≡ n.

In this article we would like to reconsider this question
of the free-energy cost under a twist of boundary con-
ditions, in the light of a distinct RSB scheme proposed
long ago [10]. This alternative scheme has the following
characteristics:
• The box order is not reversed, hence one has multiplic-

ities remaining positive:

p0 � p1 � · · · � pu � · · · pR � pR+1 ≡ 1.

• Whereas pu in Parisi’s approach is a parameter with-
out any physical conjugate field, it is replaced here
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by a susceptibility derivative ∆̇u, a physical quantity
associated with a dynamical-like approach to the spin-
glass problem (whose history is sketched below). In
fact it is a better candidate for an order parameter,
since it vanishes above the Almeida-Touless [11] line
and is non-zero below.

• At the saddle-point it gives exactly the same value as
Parisi’s for all observables, including for the overlap
probability distribution. It yields also the same eigen-
values for the Hessian at the saddle point [12], but with
different individual multiplicities.

• The cost of a twist becomes now positive, at least to
lowest order (for the “kinetic” part of the free energy,
i.e. the part which depends of the spatial variation of
the order parameter, since the potential energy is in-
variant under the twist). The one-loop contribution
will undoubtedly take some time to sort out.

To replace in context the choice made here, a short his-
torical reminder seems appropriate. It all started with
Sommers [13] proposing a new solution with non-negative
entropy to the Sherrington-Kirkpatrick [14] model, a so-
lution possessing a linear response anomaly. Enlarging on
the RSB proposal of Blandin et al. [15], soon after, De
Dominicis and Garel [16], Bray and Moore [17] linked
the non-negativity of the entropy to the infinite limit of
what has been called above the box size p0, a limit that
restituted [17] the Sommers solution. Substituting opaque
replicas by dynamics [18] led to some physical insight
and Sompolinsky [19] proposed to describe spin glasses in
terms of the spin correlation function q = 〈σσ〉 and a spin
susceptibility, or linear response χ = 〈σ̂σ〉 (σ̂ being cou-
pled to a magnetic field). The linear response anomaly ∆
is closely related to χ. In the long time limit (when the
initial time in Langevin’s equations is sent to minus in-
finity) he described the system through an infinite set of
relaxation times τu, with u = 1, 2, · · ·R and R → ∞.
When u remains discrete, his q(τu) is what we call qu and
his ∆(τ−1

u ), our ∆u (with −∆̇u = ∆u − ∆u+1). The ap-
proach used in the present article is thus a replica reformu-
lation of Sompolinsky’s dynamics as in [10]. At this point
one may ask why not retain dynamics and drop replicas
altogether. The answer is that

• although some results have been obtained beyond
mean-field through dynamics by Sompolinsky and Zip-
pelius [20,21], it is more difficult to work with four
time variables than with four replicas. For instance,
the spectrum of masses (the eigenvalues of the Hes-
sian) are easily obtained with replicas, but not yet fully
sorted out within the dynamics.

• Besides, one is interested in understanding how to ob-
tain a physical answer for the twist free-energy.

In the following we first compute in some details the
contribution to the free energy cost of a twist in the
parametrization, using Parisi’s RSB, as already sketched
before [3]. Then we perform the same calculation for the
RSB introduced by De Dominicis, Garel and Orland [10]
(DGO), that we might call also “dynamical-like” for lack
of a better name, getting then the opposite sign. Finally we

show that this result may also be understood from the fact
that there is a plateau contribution in Parisis’s solution,
where the overlap fuction remains constant and equal to
its Edwards-Anderson value, and does not fluctuate. In the
dynamical-like approach there is no such plateau. Hence
when considering spatial variations the two approaches
give distinct results, whereas they lead to identical results
for the bulk mean-field problem.

2 Kinetic free energy à la Parisi

In terms of n × n matrices qab (qaa = 0) the free energy,
in Parisi’s truncated model, reads for a spatially homoge-
neous order parameter

nF (P )/Ld = −
∑

ab

(τ

2
q2
ab +

g

12
q4
ab

)
+

w

6

∑

abc

qabqbcqca.

(1)
The contribution of the kinetic part of the free energy FK

(i.e. the part which comes form a non-spatially homoge-
neous order parameter) is given by

F
(P )
K =

Ld−1

4n

L−1∑

i=0

∑

a,b

(qab(i) − qab(i + 1))2 (2)

in which we assume twisted boundary conditions in the
z-direction (and periodic boundary conditions in the re-
maining (d-1) dimensions); space in the z-direction is kept
here discrete with 0 ≤ i ≤ L. Using Parisi’s overlap func-
tion qu, u = 0, 1, · · · , R (with qaa ≡ qR+1 = 0), and
the associated box size pu (with p0 ≡ n, pR+1 ≡ 1), one
obtains

1
n

∑

ab

q2
ab(i) =

R+1∑

u=0

(pu(i) − pu+1(i))q2
u(i). (3)

One needs also

1
n

∑

ab

qab(i)qab(i + 1) =
R+1∑

u=0

[
1
2
(pu(i) + pu(i + 1))

− 1
2
(pu+1(i) + pu+1(i + 1))]qu(i)qu(i + 1). (4)

This gives then

F
(P )
K =

Ld−1

4

L−1∑

i=0

R+1∑

u=0

[(
pu(i) − pu+1(i)

)
qu(i)

− (
pu(i + 1) − pu+1(i + 1)

)
qu(i + 1)][qu(i) − qu(i + 1)

]
.

(5)

In the R → ∞ continuum limit, we have

pu(i) − pu+1(i) → −ṗ(u; i)du (6)
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and finally

F
(P )
K = −Ld−1

4

∫ L

0

dz

∫ 1−ε

0

du
∂

∂z
(ṗ(u; z)q(u; z))

∂

∂z
q(u; z).

(7)
At the bulk saddle-point one has

q(u) =
w

2g
p(u). (8)

For twisted boundary conditions, to lowest order in
the twist h(u) (h 
 1 and limited to a small
support 0 < u < x̃),

q(u; z) =
w

2g

(
u +

z

L
h(u)

)
+ O(h2) =

w

2g
p(u; z) + O(h2).

(9)
Substituting (9) into (3) we finally obtain

F
(P )
K = −1

8

(
w

2g

)2

Ld−2

∫ x̃

0

du h2(u) (10)

that is a negative cost in free energy for the introduction
of a twist.

3 Kinetic free energy à la DGO

Whereas the zeroth step in Parisi approach is the (R = 0)
matrix qab = q for a �= b (with qaa = 0), here the ze-
roth step is the so-called Sommers starting point (formally
identical to the R = 1 Parisi’s RSB). Namely, one divides
the n×n matrix Qab into n/p0 blocks qα,β (of size p0×p0)
along the diagonal, and n

p0
( n

p0
−1) off-diagonal blocks rα,β

(of the same size p0×p0). Then one does R steps of RSB on
both matrices qα,β and rα,β (whereas in Parisi’s approach
those steps would only involve the diagonal blocks qα,β).
One thus needs a double labelling for each element of
the initial matrix Qab in order to specify for a (and b)
the p0×p0 block matrix under consideration, and the ele-
ment in this block matrix. One thus writes a = (α, x) with
x = 1, 2, · · · , n/p0 and α = 1, 2, · · · , p0

Qab ≡ Qα,x;β,y = qα,βδx,y + rα,β(1 − δx,y). (11)

The RSB steps apply now to the matrices qα,β

(with qα,α = 0) generating q0, q1, · · · , qR, qR+1 ≡ 0,
and to the matrices rα,β giving rise to r0, r1, · · · , rR+1.
The successive steps of RSB involve the box
sizes p0, p1, · · · , pR (pR+1 ≡ 1). In the DGO scheme
the box sizes are made to go to infinity in the prescribed
natural order

p0 � p1 � · · · � pR � pR+1 ≡ 1 (12)

with at the same time letting the matrix elements of q− r
go to zero in such a way that

−∆̇0 = p0(q0 − r0) (13)

remains finite and in general

−∆̇u = pu[(qu − ru)− (pu−1 − ru−1)] � pu(qu − ru). (14)

Here ∆̇u can be shown to be the (discrete) susceptibility
derivative

−∆̇u = ∆u − ∆u+1 (15)

(−∆̇u is a positive quantity).
As a result the Parisi free energy func-

tional F (P ){pu; qu} is replaced by a dynamical-like
free energy F (D){∆̇u; qu} with the associated stationarity
conditions determining qu, ∆̇u and their relationship.

This alternative formulation gives in the R → ∞ con-
tinuum and at the saddle-point results that are identical
to Parisi’s. Besides it also leads to the same eigenvalues of
the Hessian at the saddle-point [12].

After this brief reminder we now proceed to derive the
kinetic contribution:

F
(D)
K =

Ld−1

4n

∑

i

∑

a,b

[Qab(i) − Qab(i + 1)]2. (16)

We have:
1
n

∑

ab

Q2
ab =

1
n

∑

α,β

∑

x,y

[(qα,β − rα,β)δx,y + rα,β ]2. (17)

Summing upon x, y one obtains

1
n

∑

ab

Q2
ab =

1
n

∑

α,β

{
n

p0
[(qα,β − rα,β)2 +2rα,β(qα,β − rα,β)]

+
(

n

p0

)2

r2
α,β

}
. (18)

After R steps of RSB one obtains

1
n

∑

ab

Q2
ab =

1
n

n

p0
p0

R∑

u=0

(pu − pu+1)
[(

q2
u − r2

u

)
+

n

p0
ru

]

=
R∑

u=0

pu

[(
q2
u − r2

u

) − (
q2
u−1 − r2

u−1

)] − r2
R+1.

(19)

Since pu → ∞, pu

pu−1
→ 0, qu − ru ∼ 1

pu
for u = 1, · · · , R

in the limit (12) the equation (19) reduces to

1
n

∑

ab

Q2
ab = −2

R∑

u=0

qu∆̇u − r2
R+1. (20)

The analog of (3) is now

1
n

∑

ab

Q2
ab(i) = −2

R∑

u=0

qu(i)∆̇u(i) − r2
R+1. (21)

Likewise (4) becomes

1
n

∑

ab

Qab(i)Qab(i + 1) =
R∑

u=0

pu[qu(i)qu(i + 1)

− ru(i)ru(i + 1)] − r2
R+1. (22)
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The box sizes going to infinity do not carry a space index
any more and we end up with

1
n

∑

ab

Qab(i)Qab(i + 1) =
R∑

u=0

[
∆̇u(i)qu(i + 1)

+∆̇u(i + 1)qu(i)
]
− r2

R+1. (23)

The result for the kinetic part of the mean field free
energy functional is thus

F
(D)
K =

Ld−1

4n

L−1∑

i=0

∑

ab

(
Qab(i) − Qab(i + 1)

)2

= −Ld−1

2

L∑

i=0

R∑

u=0

[
qu(i)∆̇u(i) + qu(i + 1)∆̇u(i + 1)

− qu(i)∆̇u(i + 1) − qu(i + 1)∆̇u(i)
]

= −Ld−1

2

L∑

i=0

R∑

u=0

[(
qu(i) − qu(i + 1)

)

×
(
∆̇u(i) − ∆̇u(i + 1)

)]
(24)

and in the double continuum limit, in which both space
is continuous and R, the number of steps of RSB, goes to
infinity

F
(D)
K = −Ld−1

2

∫ L

0

dz

∫ x1

0

du
∂q(u; z)

∂z

∂∆̇(u; z)
∂z

. (25)

At the saddle-point one has [10,19]

−∆̇(u) =
2g

w
q(u)q̇(u) (26)

which is the “anomalous fluctuation-dissipation relation-
ship” for the spin-glass. Again, to lowest order in the
twist h(t), one can just keep, as in (9)

q(u; z) =
w

2g
[u +

z

L
h(u)] + O(h2) (27)

from which one obtains, to lowest order, the free energy
for that twist

F
(D)
K =

1
4
(
w

2g
)2Ld−2

∫ x̃

0

du h2(u) (28)

so that

F
(D)
K = −2F

(P )
K . (29)

The signs are opposite: the free energy cost under twist is
positive for the dynamical-like RSB.

4 A simple calculation at the saddle-point

Given the previous difference between the two RSB
schemes when one considers the spatial variation of the
order parameter, one may examine in the light of the pre-
vious calculation why the two free energies happen to co-
incide for a spatially uniform order parameter.

For instance let us consider the bulk contribution to
the free energy per unit volume which is quadratic in the
order parameter:

fτ =
τ

4

∑

ab

q2
ab. (30)

In Parisi’s scheme one finds

f (P )
τ =

τ

4

R−1∑

u=0

(pu − pu−1)q2
u + (pR − 1)q2

R

=
τ

4

[
−

∫ x1

0

duq2(u) + (x1 − 1)q2(x1)
]

=
τ

4

(
w

2g

)2[
− x3

1

3
+ (x1 − 1)x2

1

]
. (31)

Here the second term in the bracket comes from the
“plateau” sector of q(u) (x1 ≤ u < 1), at which it remains
fixed to its Edwards-Anderson value

q(x1) =
w

2g
x1. (32)

The mean field stationarity conditions determine x1 in
terms of the external parameters (temperature and cou-
pling constants).

For the dynamical-like approach one finds

f (D)
τ =

τ

4
[−

R∑

u=0

2q(u)∆̇(u) − r2
R+1

=
τ

4

[
2

∫ x1

u=0

duq2(u)
2g

w
q̇(u) − q2(x1)

]

=
τ

4

(
w

2g

)2[2x3
1

3
− x2

1

]
. (33)

The two results (31) and (33) at the end coincide as
announced, however the origin of the various terms are
different. Indeed in (31) part of the answer comes from
the plateau where fluctuations are not allowed under
twist. Thus when considering fluctuations the plateau part
in (31) will not contribute and one will obtain

(
f (D)

τ

)

fluct.
= −2

(
f (P )

τ

)

fluct.
(34)

as we found in (29).
Similar calculations for the parts of the free energy

which are cubic and quartic in the order parameter would
show a similar conspiracy to make the bulk contributions
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identical, but yield different results when the order pa-
rameter varies in space.

5 Conclusion

We have thus demonstrated that two approaches, using
different RSB schemes, that provide identical results for
the bulk mean-field energy, lead to distinct (and opposite)
answers when one enforces spatial variations of the order
parameter. The negative multiplicities occuring in Parisi’s
scheme were responsible for a decrease of the free energy
under twist, whereas the dynamical-like DGO scheme,
that enjoys positive multiplicities, does lead to an increase
under twist.

At this point many questions remain opened. First,
and even without introducing constraints in the bound-
ary conditions, one would like to compare the fluctuations
for the bulk. As we know such loop corrections need be
included to describe physics below six dimensions and one
would like to see whether such fluctuations are identical
to, or differ from, fluctuations calculated within Parisi’s
approach in finite dimensions.

Next one would like to compute responses associated
with inhomogeneous boundary conditions (to one-loop) as
was done within Parisi’s approach in [3]. Finally it would
be very gratifying to construct a direct connection be-
tween the dynamical field theoretic approach of Sompolin-
sky and Zippelius [20,21] and the dynamical-like replica
approach considered here.

We would like to thank G. Parisi and S. Franz for useful dis-
cussions. One of us (CDD) would like to thank also G. Biroli
and A. Crisanti.
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